
22.11.2015 Slide 1Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Trayan Iliev

IPT – Intellectual Products & Technologies
e-mail: tiliev@iproduct.org

web: http://iproduct.org

Oracle® and Java™ are trademarks or registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

Java High Performance Reactive Programming

http://iproduct.org/
mailto:tiliev@iproduct.org
http://iproduct.org/

22.11.2015 Slide 2Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

 Agenda

1. Reactive programming. Reactive Streams Specification.
Functional Reactive Programing.

2. Low latency and high throughput programming in Java.

3. Main performance factors – CPU architecture, memory
hierarchies, lock contention, false sharing.

4. Single writer designs. The LMAX Disruptor (RingBuffer) high
performance inter-thread messaging library.

5. Reactor & Proactor design patterns.

6. Building high-performance non-blocking asynchronous
applications on the JVM using Reactor project.

7. RxJava –Java ReactiveX (Reactive Extensions)

http://iproduct.org/

22.11.2015 Slide 3Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Disclaimer

All information presented in this document and all supplementary
materials and programming code represent only my personal opinion
and current understanding and has not received any endorsement or
approval by IPT - Intellectual Products and Technologies or any third
party. It should not be taken as any kind of advice, and should not be

used for making any kind of decisions with potential commercial impact.
The information and code presented may be incorrect or incomplete.
It is provided "as is", without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose and non-infringement. In no event shall the author or

copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or
in connection with the information, materials or code presented or the

use or other dealings with this information or programming code.

http://iproduct.org/

22.11.2015 Slide 4Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

About

Trayan Iliev

IPT – Intellectual Products &
Technologies

IT Education Company
specialized in Java™ and

Java EE/Web and JS trainings

You are welcome!
http://iproduct.org/

http://iproduct.org/
http://iproduct.org/

22.11.2015 Slide 5Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Being Reactive - What It Really Means?

My Favourite Definition of
Reactive Streams :)

https://youtu.be/qybUFnY7Y8w

http://iproduct.org/
https://youtu.be/qybUFnY7Y8w

22.11.2015 Slide 6Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

We Live in a Connected Universe

The title refers to the butterfly
effect, a popular hypothetical
example of chaos theory
which illustrates how small
initial differences may activate
chains of events leading to
large and often unforeseen
consequences in the future...
Source: https://en.wikipedia.org/wiki/The_Butterfly_Effect#/media/File:Butterflyeffect_poster.jpg
Fair use, File:Butterflyeffect poster.jpg, Uploaded by Yaminator, Uploaded: 8 July 2008

http://iproduct.org/
https://en.wikipedia.org/wiki/The_Butterfly_Effect#/media/File:Butterflyeffect_poster.jpg

22.11.2015 Slide 7Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

We Live in a Connected Universe

... there is hypothesis that all the things in the
Universe are intimately connected, and you can
not change a bit without changing all.

Action – Reaction principle is the essence of how
Universe behaves.

http://iproduct.org/

22.11.2015 Slide 8Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactive Programming. Functional Programing

Reactive Programming [Wikipedia]: a programming paradigm
oriented around data flows and the propagation of change. This
means that it should be possible to express static or dynamic
data flows with ease in the programming languages used, and
that the underlying execution model will automatically propagate
changes through the data flow. Ex: a := b + c
Functional Programming [Wikipedia]: a programming
paradigm that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable
data. It is a declarative programming paradigm. Eliminating side
effects can make it much easier to understand and predict the
program behavior. Ex: book -> book.getAuthor().fullName()

http://iproduct.org/

22/11/2015 Slide 9

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Functional Reactive Programming: StackOverflow

According to Connal Elliot's answer in Stack Overflow (ground-
breaking paper @ Conference on Functional Programming, 1997):

I'm glad you're starting by asking about a specification rather than
implementation first. There are a lot of ideas floating around about
what FRP is. For me it's always been two things: (a) denotative
and (b) temporally continuous. Many folks drop both of these
properties and identify FRP with various implementation notions, all
of which are beside the point in my perspective.

"functional reactive programming" = "denotative, continuous-time
programming" (DCTP)

http://iproduct.org/

22/11/2015 Slide 10

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Denotative, Continuous-Time Programming
according to Connal Elliot @StackOverflow

By "denotative", I mean founded on a precise, simple,
implementation-independent, compositional semantics that exactly
specifies the meaning of each type and building block. The
compositional nature of the semantics then determines the
meaning of all type-correct combinations of the building blocks.

About continuous time, see the post Why program with continuous time?
Using lazy functional languages, we casually program with infinite data on
finite machines.
I like my programs to reflect how I think about the problem space rather than
the machine that executes the programs, and I tend to expect other high-
level language programmers to share that preference.

http://iproduct.org/
http://conal.net/blog/posts/why-program-with-continuous-time

22/11/2015 Slide 11

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Functional Reactive Programming: @MEAP
by Stephen Blackheath & Anthony Jones

Functional Reactive
Programming

Stephen Blackheath and
Anthony Jones

MEAP began November
2014 Publication in
February 2016 (estimated)

ISBN 9781633430105

245 pages (estimated)

DEFINITION [Denotational semantics]

is a mathematical expression of the
formal meaning of a programming
language. For an FRP system, it
provides both a formal specification of
the system, and a proof that the
important property of compositionality
holds for all building blocks in all cases.

https://github.com/SodiumFRP/sodium/

http://iproduct.org/
https://www.manning.com/books/functional-reactive-programming
https://github.com/SodiumFRP/sodium/

22/11/2015 Slide 12

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactive Manifesto
[http://www.reactivemanifesto.org/]

Elastic

Responsive

Resilient

Message Driven

http://iproduct.org/
http://www.reactivemanifesto.org/

22/11/2015 Slide 13

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Other Definitions of Reactive Programming

Microsoft® opens source polyglot project ReactiveX
(Reactive Extensions) [http://reactivex.io]:

 Rx = Observables + LINQ + Schedulers :)
Supported Languages – Java: RxJava, JavaScript: RxJS, C#: Rx.NET,
 C#(Unity): UniRx, Scala: RxScala, Clojure: RxClojure, C++: RxCpp,
Ruby: Rx.rb, Python: RxPY, Groovy: RxGroovy, JRuby: RxJRuby,
Kotlin: RxKotlin, Swift: RxSwift
ReactiveX for platforms and frameworks: RxNetty, RxAndroid, RxCocoa

Reactive Streams Specification
[http://www.reactive-streams.org/] used by Project Reactor
[http://projectreactor.io/, https://github.com/reactor/reactor]

http://iproduct.org/
http://reactivex.io/
http://www.reactive-streams.org/
http://projectreactor.io/
https://github.com/reactor/reactor

22.11.2015 Slide 14Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactive Streams Specification
[http://www.reactive-streams.org/]

Reactive Streams is an initiative to provide a standard for
asynchronous stream processing with non-blocking back
pressure. This encompasses efforts aimed at runtime
environments (JVM & JavaScript) as well as network protocols.
The scope of Reactive Streams is to find a minimal set of
interfaces, methods and protocols that will describe the
necessary operations and entities to achieve the goal –
asynchronous streams of data with non-blocking back
pressure.
As of April 30, 2015 have been released version 1.0.0 of
Reactive Streams for the JVM, including Java API, a textual
Specification, a TCK and implementation examples.

http://iproduct.org/

22.11.2015 Slide 15Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactive Streams Specification
[https://github.com/reactive-streams/reactive-streams-jvm]

Publisher – provider of potentially unbounded number of
sequenced elements, according to Subscriber(s) demand. After
invoking Publisher.subscribe(Subscriber). Subscriber methods
protocol is: onSubscribe onNext* (onError | onComplete)?
Subscriber – receives call to onSubscribe(Subscription) once
after passing an instance to Publisher.subscribe(Subscriber).
No further notifications until Subscription.request(long) is called.
Subscription – represents one-to-one lifecycle of a Subscriber
subscribing to a Publisher. It is used to both signal desire for
data and cancel demand (and allow resource cleanup).
Processor -represents a processing stage, which is both a
Subscriber and Publisher and obeys the contracts of both.

http://iproduct.org/

22.11.2015 Slide 16Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactive Programming = Programming with
Asynchronous Data Streams

Functional Reactive Programming (FRP) [Wikipedia]: a
programming paradigm for reactive programming
(asynchronous dataflow programming) using the building blocks
of functional programming (e.g. map, reduce, filter). FRP has
been used for programming graphical user interfaces (GUIs),
robotics, and music, aiming to simplify these problems by
explicitly modeling time. Example (RxJava):

Observable.from(new String[]{"Reactive", "Extensions", "Java"})
 .take(2).map(s -> s + " : on " + new Date())
 .subscribe(s -> System.out.println(s));

Result: Reactive : on Wed Jun 17 21:54:02 GMT+02:00 2015
 Extensions : on Wed Jun 17 21:54:02 GMT+02:00 2015

Good intro tutorial in RP using RxJS by Andre Staltz see: https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
JS Fiddle of the demo: http://jsfiddle.net/staltz/8jFJH/48/

http://iproduct.org/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
http://jsfiddle.net/staltz/8jFJH/48/

22/11/2015 Slide 17

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Performance is about 2 things - throughput, e.g. units per
second, and response time otherwise know as latency. It is
important to define the units and not just say something should
be "fast". Real-time has a very specific definition and is often
misused. Real-time is to do with systems that have a real time
constraint from input event to response time regardless of
system load. In a hard real-time system if this constraint is
not honored then a total system failure can occur. Good
examples are heart pacemakers or missile control systems.

(- continued on next slide -)

What Is Low Latency? - Martin Thompson:
http://www.infoq.com/articles/low-latency-vp

http://iproduct.org/

22/11/2015 Slide 18

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

What Is Low Latency? - Martin Thompson :

… With trading systems, real-time tends to have a different
meaning in that the system must have high throughput and
react as quickly as possible to an event, which can be
considered "low latency". Missing a trading opportunity is
typically not a total system failure so you cannot really call this
real-time.

A good trading system will have a high quality of execution for
which one aspect is to have a low latency response with little
deviation in response time.

[Martin Thompson]

http://iproduct.org/

22/11/2015 Slide 19

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

What Is Low Latency? - Answers by Experts:
http://www.infoq.com/articles/low-latency-vp
A system with a measured latency requirement which is too fast
to see. This could be anywhere from 100 nano-seconds to 100
milli-seconds. [Peter Lawrey]

Real-time and low latency can be quite different. The majority
view on "real-time" would be determinism over pure speed with
very closely controlled, or even bounded, outliers. However,
"low latency" typically implies that pure speed is given much
higher priority and some outliers may be, however slightly,
more tolerable. This is certainly the case when thinking about
hard real-time. One of the key pre-requisites for low latency is a
keen eye for efficiency. From a system view, this efficiency

(- continued on next slide -)

http://iproduct.org/

22/11/2015 Slide 20

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

What Is Low Latency? - Todd L. Montgomery :

... must permeate the entire application stack, the OS, and the
network. This means that low latency systems have to have a
high degree of mechanical sympathy to all those components.
In addition, many of the techniques that have emerged in low
latency systems over the last several years have come from
high performance techniques in OSs, languages, VMs,
protocols, other system development areas, and even
hardware design.

[Todd L. Montgomery]

http://iproduct.org/

22/11/2015 Slide 21

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

What Is Low Latency? - Andy Piper :

Latency is simply the delay between decision and action. In
the context of high performance computing, low latency has
typically meant that transmission delays across a network are
low or that the overall delays from request to response are low.
What defines "low" depends on the context – low latency over
the Internet might be 200ms whereas low latency in a trading
application might by 2μs. Technically low latency is not the
same as real-time – low latency typically is measured as
percentiles where the outliers (situations in which latency has
not been low) are extremely important to know about. With real-
time, guarantees are made about the behavior of the system –

(- continued on next slide -)

http://iproduct.org/

22/11/2015 Slide 22

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

What Is Low Latency? - Andy Piper :

… so instead of measuring percentile delays you are enforcing
a maximum delay. You can see how a real-time system is also
likely to be a low latency system, whereas the converse is not
necessarily true. Today however, the notion of enforcement is
gradually being lost so that many people now use the terms
interchangeably.
If latency is the overall delay from request to response then it is
obvious that many things contribute to this delay – CPU,
network, OS, application, even the laws of physics! Thus low
latency systems typically require high-performance code so
that software elements of latency can be reduced.

[Dr. Andy Piper]

http://iproduct.org/

22/11/2015 Slide 23

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Low Latency Software System

Low latency software system is a system in which the
hardware (CPU, cache, memory, IO, Network), low-level
operating system, language specific implementation platform
(e.g. JVM), and application level code are working in harmony
to minimize the time needed for event (request, message)
processing. This synergistic property of different system layers
is sometimes called Mechanical Sympathy.

In order to achieve low latency we have to minimize the time
one component is waiting unnecessary for another component
to finish, shortening the critical path.

This is achieved by making informed decisions during phases
of system design, implementation, configuration and testing.

http://iproduct.org/

22/11/2015 Slide 24

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

What Is Throughput?

Number of events (requests, messages, bytes) that are
processed by the system per second.

Does high throughput imply low latency?

Not necessarily – e.g. bus vs. car traveling:

Which has the higher throughput?
Which has the lower latency?

Throughput ~ System Capacity / Latency

 System Capacity = Number of units processed in parallel

Achieving Low Latency may mean additional work done by
system => lowered System Capacity and Throughput

http://iproduct.org/

22/11/2015 Slide 25

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

According to Peter Lawrey:

Critical operations can be modeled as a series of asynchronous
events, which can be recorded, knowing critical system state

Horizontal scalability is valuable for high throughput. For low
latency, you need simplicity - the less to do the less time it takes

The key driver for low latency is how easy is it to take out
redundant operations from the critical path.

You have to understand how all different layers interact for the
critical code and often combine layers to simplify the task.

You can use natural Java for non critical code - the majority. For
critical sections you need a subset of Java and libraires which
are suitable for low latency. => 10% / 90% principle

http://iproduct.org/

22/11/2015 Slide 26

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

InfoQ: How Well Is Java Suited for Low Latency?
http://www.infoq.com/articles/low-latency-vp

Lawrey: If your application spends 90% of the time in 10% of
your code, Java makes optimising that 10% harder, but writing
and maintaining 90% of your code easier; especially for teams
of mixed ability.

Montgomery: ... I think currently, the difference in performance
between Java and C++ is so close that it's not a black and
white decision based solely on speed. Improvements in GC
techniques, JIT optimizations, and managed runtimes have
made traditional Java weaknesses with respect to performance
into some very compelling strengths that are not easy to
ignore.

http://iproduct.org/

22/11/2015 Slide 27

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

InfoQ: How Well Is Java Suited for Low Latency?
http://www.infoq.com/articles/low-latency-vp

Thompson: Low latency systems written in Java tend to not
use 3rd party or even standard libraries for two major reasons.
Firstly, many libraries have not been written with performance in
mind and often do not have sufficient throughput or response
time. Secondly, they tend to use locks when concurrent, and
they generate a lot of garbage. Both of these contribute to
highly variable response times, due to lock-contention and
garbage collection respectively.

Java has some of the best tooling support of any language
which results in significant productivity gains. Time to market is
often a key requirement when building trading systems, and
Java can often get you there sooner.

http://iproduct.org/

22/11/2015 Slide 28

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

InfoQ: How Well Is Java Suited for Low Latency?
http://www.infoq.com/articles/low-latency-vp

Piper: … writing good low latency code in Java is relatively hard
since the developer is insulated from the guarantees of the
hardware by the JVM itself. The good news is that this is
changing, not only are JVMs constantly getting faster and more
predictable but developers are now able to take advantage of
hardware guarantees through a detailed understanding of the
way that Java works – in particular the Java Memory Model -
and how it maps to the underlying hardware ... A good example
is the lock-free, wait-free techniques ... as these techniques
become more mainstream we are starting to see their uptake in
standard libraries (e.g. the Disruptor) so that developers can
adopt the techniques without needing such a detailed
understanding of the underlying behaviour.

http://iproduct.org/

22/11/2015 Slide 29

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

InfoQ: How Well Is Java Suited for Low Latency?
http://www.infoq.com/articles/low-latency-vp

Piper (- continued -): Even without these techniques the safety
advantages of Java (memory management, thread
management etc.) can often outweigh the perceived
performance advantages of C++, and of course JVM vendors
have claimed for some time that modern JVMs are often faster
than custom C++ code because of the holistic optimizations
that they can apply across an application.

http://iproduct.org/

22.11.2015 Slide 30Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Low Latency: Things to Remember

Low garbage through reusing existing objects - infrequent GC
ideally when application not busy – can improve app 2 - 5x

In JVM using generational GC startegy it is ideal objects
either to live very shortly (to be garbage collected in the next
minor sweep) or be immortal (reused forever).

Non-blocking, lockless coding – if there should be mutual
exclusion it is preferred to use Compre-And-Swap – CAS
(java.util.concurrent.atomic), than locks.

For critical data structures – direct memory access using
DirectByteBuffers or Unsafe => predictable memory layout and
cache misses avoidance.

http://iproduct.org/

22.11.2015 Slide 31Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Low Latency: Things to Remember - II

Busy waiting isolated critical threads – giving the CPU to the
OS kernel slows your program by 2-5x (according to Lawrey)
=> avoid voluntary context switches.

Write an algorithm that can amortize the effect of expensive
operations like IO (including network) and cache misses –
every IO operation that can block eventually will block – don't
be surprised.

Avoid “false sharing” - the situation that arises when two
independent variables written concurrently by two different
threads (and employing memory barrier e.g. using volatile)
share the same cache-line (32-256 bytes, typically 64 bytes)
if contention is to be minimized.

http://iproduct.org/

22.11.2015 Slide 32Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Parallelism & Concurrency

Doing several tasks in parallel can increase your Throughput
by increasing System Capacity – it is GOOD!
But it usually comes hand-in-hand with concurrent access to
shared resources => you have to provide mutual exclusion
(MutEx) by parallel threads when changing the state of those
resources (read only access can be shared by multiple threads)

Mutual exclusion can be achieved in several ways:
synchronized – hardwired in HotSpot JVM, well optimized in J6
ReentrantLock, ReadWriteLock, StampedLock →
java.util.concurrent.locks.*
Optimistic Locking - tryLock(), Using Compare-And-Swap
(CAS) instructions → java.util.concurrent.atomic.*

http://iproduct.org/

22.11.2015 Slide 33Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Comparing Different Concurrent Implementations

Simple problem: incrementing a long value 500 000 000 times.

9 implementations:

SynchronousCounter – while (counter++ < 500000000){}

SingleThreadSynchronizedCounter – 1T using synchronized

TwoThreadsSynchronizedCounter – 2T using synchronized

SingleThreadCASCounter – 1T using AtomicLong

TwoThreadsCASCounter – 2T using AtomicLong

TwoThreadsCASCounterLongAdder – 1T using LongAdder

SingleThreadVolatileCounter – 1T, memory barrier (volatile)

TwoThreadsVolatileCounter – 2T, memory barrier (volatile)

http://iproduct.org/

22.11.2015 Slide 34Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Comparing Different Concurrent Implementations

Test results (on my laptop - quad core Intel i7@2.2GHz):

SynchronousCounter – 190ms

SingleThreadSynchronizedCounter – 15000 ms

TwoThreadsSynchronizedCounter – 21000 ms

SingleThreadCASCounter – 4100 ms

TwoThreadsCASCounter – 12000 ms

TwoThreadsCASCounterLongAdder – 12800 ms
SingleThreadVolatileCounter – 4100 ms

TwoThreadsVolatileCounter – 20000 ms

http://iproduct.org/

22.11.2015 Slide 35Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Comparing Different Concurrent Implementations

For more complete microbenchmarking of different Mutex
implementations see:

http://blog.takipi.com/java-8-stampedlocks-vs-readwritelocks-
and-synchronized/

http://www.slideshare.net/haimyadid/java-8-stamped-lock

http://iproduct.org/

22.11.2015 Slide 36Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Mutex Comparison => Conclusions

Non-blocking (synchronous) implementation is 2 orders of
magnitude better then synchronized
We should try to avoid blocking and especially contended
blocking if want to achieve low latency
If blocking is a must we have to prefer CAS and optimistic
concurrency over blocking (but have in mind it always depends
on concurrent problem at hand and how much contention do we
experience – test early, test often, microbenchmarks are
unreliable and highly platform dependent – test real
application with typical load patterns)
The real question is: Is it possible to build concurrency
without blocking?

http://iproduct.org/

22.11.2015 Slide 37Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Main Factors Affecting Performance - I

CPU architecture – multicore, hyperthreading
Memory hierarchies – caches, predictive caching, memory
access patterns: temporal, spatial, striding
Garbage Collection – serial, parallel and concurrent GC
strategies, genrational GC
Lock contention –

uncontended locks - JVM executes fast path code to acquire and
release thin lock ownership. The fast path typically involves one or
two compare-exchange instructions (lock;cmpxchg on x86 and
cas on SPARC) ~ 10 – 20 CPU cycles after Nehalem architecture

contended locks - much more expensive because the thread has
to be parked and the control has to be released to OS kernel

http://iproduct.org/

22.11.2015 Slide 38Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Main Factors Affecting Performance - II

False sharing – when two independent variables written
concurrently by two different threads share the same cache-line
(typically 64 bytes) => has the same effect as two threads
contending on single variable

http://iproduct.org/

22.11.2015 Slide 39Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

CPU Cache Architecture – False Sharing
Core 2 Core NCore 1 ...

Registers

Execution Units

L1 Cache A | | B |

L2 Cache A | | B |

L3 Cache A | | B |

DRAM Memory A | | B |

Registers

Execution Units

L1 Cache A | | B |

L2 Cache A | | B |

http://iproduct.org/

22.11.2015 Slide 40Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Building Scalable, Massively Concurrent
Computation Architectures

Message Driven – asynchronous message-passing allows to
establish a boundary between components that ensures loose
coupling, isolation, location transparency, and provides the
means to delegate errors as messages [Reactive Manifesto].

The main idea is to separate concurrent producer and
consumer workers by using message queues.

Message queues can be unbounded or bounded (limited max
number of messages)

Unbounded message queues can present memory allocation
problem in case the producers outrun the consumers for a long
period → OutOfMemoryError

http://iproduct.org/
http://www.reactivemanifesto.org/

22.11.2015 Slide 41Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Message Driven Designs

Message-driven architecture has been employed in a number of
designs at different levels of the system stack – examples:

Field-programmable gate arrays (FPGA) – different
concurrently working MicroBlaze™ cores (Xilinx®) separated by
bounded queues passing data between cores.
Message-Oriented Middleware (MOM) – e.g. Java Message
Service (JMS) & Message Driven Beans (MDB) as part of
JavaEE specification.
Service Oriented Architecture (SOA) – SOAP (XML) and REST
(JSON, BSON, XML, etc.)
Actor Model (http://dspace.mit.edu/handle/1721.1/6952), Akka
Microservices (or even Nano Services, are there Piko? :)

http://iproduct.org/
http://dspace.mit.edu/handle/1721.1/6952

22/11/2015 Slide 42

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Disadvantages of Traditional Queues
[http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]

Queues typically use either linked-lists or arrays for the
underlying storage of elements. Linked lists are not
„mechanically sympathetic” – there is no predictable caching
“stride” (should be less than 2048 bytes in each direction).

Bounded queues often experience write contention on head,
tail, and size variables. Even if head and tail separated using
CAS, they usually are in the same cache-line.

Queues produce much garbage.

Typical queues conflate a number of different concerns –
e.g. producer and consumer synchronization and data storage

http://iproduct.org/

22/11/2015 Slide 43

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Single Writer Designs. LMAX Disruptor (RingBuffer)
High Performance Inter-Thread Messaging Library

[http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]

Instead of conflation synchronization and storage the LMAX
Disruptor design pattern separates different concerns in a
“mechanically sympathetic” way:

Storage of items being exchanged

Coordination of producers claiming the next sequence for
exchange
Coordination of consumers being notified that a new item is
available

Single Writer principle is employed when writing data in the
Ring Buffer from single producer thread only (no contention)

http://iproduct.org/

22/11/2015 Slide 44

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor (RingBuffer) High Performance
[http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]

In more exotic case of multiple producers which race with each
other to claim the next entry in the ring-buffer, simple CAS
operation on the sequence number for that slot is employed.

Consumers wait for a sequence to become available in the ring
buffer before they read the entry using loop checking with or
without yielding (trading CPU for latency), or if CPU resource
precious can wait on condition within a producer signaled lock.

All the memory for storing entries is pre-allocated on starup
as a cache friendly array with predictable stride and there is
effectively no garbage produced (slots are reused) during the
operation. The size should be power of 2 (faster reminder calc)

http://iproduct.org/

22.11.2015 Slide 45Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor (RingBuffer) High Performance
[http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]

Source: LMAX Disruptor github wiki - https://raw.githubusercontent.com/wiki/LMAX-Exchange/disruptor/images/Models.png
LMAX-Exchange Disruptor License @ GitHub: Apache License Version 2.0, January 2004 - http://www.apache.org/licenses/

http://iproduct.org/

22/11/2015 Slide 46

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor DSL & API
[https://github.com/LMAX-Exchange/disruptor/wiki/Introduction]

Ring Buffer – in Disruptor 3.0 the Ring Buffer is only
responsible for the storing and updating the data (Events)

Sequence – used to identify where a particular component is
up to in the buffer. Each consumer (EventProcessor) maintains
a Sequence as does the Disruptor itself. Sequences supports
features of an AtomicLong + false sharing prevention.

Sequencer – real Disruptor core: 2 implementations (single
producer, multi-producer) implementing concurrent algorithms
for fast passing of data between producers and consumers.

Sequence Barrier – produced by the Sequencer, contains
references to the published Sequences from the Sequencer
and dependent consumers, determines if Events to consume.

http://iproduct.org/

22/11/2015 Slide 47

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor DSL & API
[https://github.com/LMAX-Exchange/disruptor/wiki/Introduction]

Wait Strategy – the Wait Strategy determines how a consumer
will wait for events to be placed into the Disruptor by a producer;
optionally lock-free.

Event – user defined data unit passed from producer to
consumer.

EventProcessor – main event loop handling Disruptor events;
owner of consumer's Sequence => BatchEventProcessor

EventHandler – an interface that is implemented by the user
and represents a consumer for the Disruptor.

Producer – the user defined code that calls the Disruptor to
enqueue Events.

http://iproduct.org/

22.11.2015 Slide 48Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor Example – Single Producer
& Single Consumer - I

 public final class ValueEvent {
 private long value;
 public long getValue() {
 return value;
 }
 public void setValue(final long value) {
 this.value = value;
 }
 public final static EventFactory<ValueEvent> EVENT_FACTORY =
 new EventFactory<ValueEvent>() {
 public ValueEvent newInstance() {
 return new ValueEvent();
 }
 };
}

http://iproduct.org/

22.11.2015 Slide 49Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor Example – Single Producer
& Single Consumer - II

public class Demo1P1C {
 public static final int RING_SIZE = 128;
 public static final int SAMPLES_SIZE = 500000;
 public static final int NUMBER_CONSUMERS = 1;
 public static long start, end;
 public static final ExecutorService EXECUTOR =
 Executors.newFixedThreadPool(NUMBER_CONSUMERS);

 public static void main(String[] args) {
 final EventHandler<ValueEvent> handler =
 new EventHandler<ValueEvent>() {
 private BitSet bset = new BitSet(SAMPLES_SIZE);
 public void onEvent(final ValueEvent event, final long
 sequence, final boolean endOfBatch) throws Exception {

(- continues -)

http://iproduct.org/

22.11.2015 Slide 50Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor Example – Single Producer
& Single Consumer - III

 bset.set((int)(event.getValue()));
 if(event.getValue() == SAMPLES_SIZE - 1) {
 end = System.nanoTime();
 System.out.println("Number samples received: " +
 bset.cardinality());
 System.out.println((end - start) / 1000000d + "ms");
 }
 }
 };

 // Create single producer
 RingBuffer<ValueEvent> ringBuffer =
 RingBuffer.createSingleProducer(ValueEvent.EVENT_FACTORY,
 RING_SIZE, new SleepingWaitStrategy());

(- continues -)

http://iproduct.org/

22.11.2015 Slide 51Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

LMAX Disruptor Example – Single Producer
& Single Consumer - IV

 SequenceBarrier barrier = ringBuffer.newBarrier();
 BatchEventProcessor<ValueEvent> eventProcessor =
 new BatchEventProcessor<ValueEvent>(
 ringBuffer, barrier, handler);
 ringBuffer.addGatingSequences(eventProcessor.getSequence());
 EXECUTOR.submit(eventProcessor); //run on separate thread
 start = System.nanoTime();
 for(int i = 0; i < SAMPLES_SIZE; i++) {
 long sequence = ringBuffer.next();// claim event
 ValueEvent event = ringBuffer.get(sequence);
 event.setValue(i);
 ringBuffer.publish(sequence); //supply event
 }
}}

http://iproduct.org/

22/11/2015 Slide 52

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactor & Proactor Design Patterns

The Reactor design pattern is an event handling pattern for
handling service requests delivered concurrently to a service
handler by one or more inputs. The service handler then
demultiplexes the incoming requests and dispatches them
synchronously to the associated request handlers. [Wikipedia]

Proactor is a software design pattern for event handling in
which long running activities are running in an asynchronous
part. A completion handler is called after the asynchronous part
has terminated. The proactor pattern can be considered to be
an asynchronous variant of the synchronous reactor pattern.

[Wikipedia]

http://iproduct.org/

22/11/2015 Slide 53

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactor Design Pattern

http://iproduct.org/

22.11.2015 Slide 54Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Proactor Design Pattern

Source: Wikipedia
https://upload.wikimedia.org/wikipedia/commons/6/61/Proactor.VSD_SequenceDiagram.png
Author: UlrichAAB, License: Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

http://iproduct.org/

22/11/2015 Slide 55

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Project Reactor
[http://projectreactor.io/, https://github.com/reactor/reactor]

Reactor project allows building high-performance (low latency
and high throughput) non-blocking asynchronous applications
on the JVM.
Reactor is designed to be extraordinarily fast and can sustain
throughput rates on the order of 10's of millions of operations
per second.
Reactor has powerful API for declaring data transformations
and functional composition.
Makes use of the concept of Mechanical Sympathy by
building on top of the Disruptor RingBuffer.
Fully Reactive — Reactor is designed to be functional and
reactive to allow for easy composition of operations.

http://iproduct.org/
http://projectreactor.io/
https://github.com/reactor/reactor

22/11/2015 Slide 56

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactor Main Advantages
(According to http://projectreactor.io/)

Pre-allocation at startup-time;
Message-passing structures are bounded;
Using Reactive and Event-Driven Architecture patterns =>
non-blocking end-to-end flows, including replies;
Implement Reactive Streams Specification, to make bounded
structures efficient by not requesting more than their capacity;
Applies above features to IPC and provides non-blocking IO
drivers that are flow-control aware;
Expose a Functional API to help developers organize their code
in a side-effect free way, which helps you determine you are
thread-safe and fault-tolerant.

http://iproduct.org/
http://projectreactor.io/

22/11/2015 Slide 57

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Project Reactor – HelloWorld Example
[http://projectreactor.io/, https://github.com/reactor/reactor]

import reactor.Environment;
import reactor.rx.broadcast.Broadcaster;

public class ReactorHelloWorld {
 public static void main(String... args) throws
 InterruptedException {
 Environment.initialize();
 Broadcaster<String> sink =
 Broadcaster.create(Environment.get());
 sink.dispatchOn(Environment.cachedDispatcher())
 .map(String::toUpperCase)
 .filter(s -> s.startsWith("HELLO"))
 .consume(s -> System.out.printf("s=%s%n", s));
 sink.onNext("Hello World!"); sink.onNext("Goodbye World!");
 Thread.sleep(500);
 }
}

http://iproduct.org/
http://projectreactor.io/
https://github.com/reactor/reactor

22/11/2015 Slide 58

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Project Reactor Basic Architecture
[http://projectreactor.io/, https://github.com/reactor/reactor]

Source: Project Reactor - http://projectreactor.io/docs/reference/#_about_the_project
Project Reactor License @ GitHub: Apache License Version 2.0, January 2004 - http://www.apache.org/licenses/

http://iproduct.org/
http://projectreactor.io/
https://github.com/reactor/reactor

22.11.2015 Slide 59Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

RxJava – Java ReactiveX (Reactive Extensions)
[http://reactivex.io, https://github.com/ReactiveX/RxJava/]

ReactiveX is a polyglot library for composing asynchronous
and event-based programs by using observable sequences.
It extends the observer pattern to support sequences of data
and/or events and adds operators that allow you to compose
sequences together declaratively while abstracting away
concerns about things like low-level threading, synchronization,
thread-safety, concurrent data structures, and non-blocking I/O.
Allow composing flows and sequences of asynchronous data.
Observables can be implemented using thread-pools, event
loops, non-blocking I/O, actors (such as Akka). Client code
treats all of its interactions with Observables as asynchronous,
whether your underlying implementation is blocking or non.

http://iproduct.org/
http://reactivex.io/
https://github.com/ReactiveX/RxJava/

22.11.2015 Slide 60Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

RxJava – Hello World Example (Java 8)
[http://reactivex.io, https://github.com/ReactiveX/RxJava/]

import java.util.Date;
import rx.Observable;

public class HelloRxJava2 {
 public static void helloLambda(String... names) {
 Observable.from(names)
 .take(2).map(s -> s + " : on " + new Date())
 .subscribe(System.out::println);
 }
 public static void main(String[] args) {
 helloLambda("Reactive", "Extensions", "Java");
 }
}

http://iproduct.org/
http://reactivex.io/
https://github.com/ReactiveX/RxJava/

22.11.2015 Slide 61Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Reactor & RxJava – Corresponding Abstractions
(According to http://projectreactor.io/)

rx reactor-stream Comment

Observable reactor.rx.Stream Reflect the implementation of the

Reactive Stream Publisher

Operator reactor.rx.action.Action Reflect the implementation of the

Reactive Stream Processor

Observable with 1 data at

most

reactor.rx.Promise Type a unique result, reflect the

implementation of the Reactive

Stream Processor and provides for

optional asynchronous dispatching.

Factory API (just, from,

merge… .)

reactor.rx.Streams Aligned with a core data-focused

subset, return Stream

Functional API (map,

filter, take… .)

reactor.rx.Stream Aligned with a core data-focused

subset, return Stream

Schedulers reactor.core.Dispatcher,

org.reactivestreams.Processo

r

Reactor Streams compute operations

with unbounded shared Dispatchers

or bounded Processors

Observable.observeOn() Stream.dispatchOn() Just an adapted naming for the

dispatcher argument
Source: Project Reactor - http://projectreactor.io/docs/reference/#_about_the_project
Project Reactor License @ GitHub: Apache License Version 2.0, January 2004 - http://www.apache.org/licenses/

http://iproduct.org/
http://projectreactor.io/

22.11.2015 Slide 62Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

IPT JUG Wish Demo - Lets See Some Code :)

Code available

@ GitHub:

https://github.com/iproduct/ipt-angular2-reactive-webso
cket-demo
WebSocket endpoint java class: reactor.ReactorWishesWS

WebSocket web client: src/main/webapp (Angular2 + RxJS)

http://iproduct.org/
https://github.com/iproduct/ipt-angular2-reactive-websocket-demo
https://github.com/iproduct/ipt-angular2-reactive-websocket-demo
https://github.com/iproduct/ipt-angular2-reactive-websocket-demo/blob/master/IPT_Reactor_Demo_JUG_Wishes_1_0/src/main/java/reactor/ReactorWishesWS.java
https://github.com/iproduct/ipt-angular2-reactive-websocket-demo/tree/master/IPT_Reactor_Demo_JUG_Wishes_1_0/src/main/webapp

22.11.2015 Slide 63Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Want to Learn More: Welcome to
IPT Reactive Programming Workshop

High Performance Reactive Programming with Java™ 8
and JavaScript – February 6, 2016

http://iproduct.org/en/course-reactive-java-js/

http://iproduct.org/
http://iproduct.org/en/course-reactive-java-js/

22.11.2015 Slide 64Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved.

IPT – Intellectual Products & Technologies
Trayan Iliev, http://iproduct.org/

jProfessionals - BGJUG

Sofia November 22, 2015

Thanks for Your Attention!

Questions?

http://iproduct.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

