
April 2018, IPT Course
Introduction to Spring 5

 Introduction to
REST & HATEOAS

Trayan Iliev
tiliev@iproduct.org
http://iproduct.org

Copyright © 2003-2018 IPT - Intellectual
Products & Technologies

mailto:tiliev@iproduct.org
http://iproduct.org/

2

Agenda for This Session

 Multimedia and Hypermedia – basic concepts

 Service Oriented Architecture (SOA),

 Cloud computing and client side mashups

 REpresentational State Transfer (REST)

 Hypermedia As The Engine Of Application State
(HATEOAS)

 New Link HTTP header

 Richardson Maturity Model of Web Applications

 Cross Origin Resource Sharing

Where to Find the Demo Code?

3

Introduction to Spring 5 demos and
examples are available @ GitHub:

https://github.com/iproduct/course-spring5

https://github.com/iproduct/course-spring5

Hypertext & Hypermedia

 Hypertext is structured text that
uses logical links (hyperlinks)
between nodes containing text

 HTTP is the protocol to exchange or
transfer hypertext

 Hypermedia - extension of the
term hypertext, is a nonlinear
medium of information which
includes multimedia (text, graphics,
audio, video, etc.) and hyperlinks of
different media types (e.g. image or
animation/video fragment can be
linked to a detailed description.

Multipurpose Internet Mail Extensions
(MIME)

 Different types of media are represented using different
text/binary encoding formats – for example:
– Text -> plain, html, xml ...
– Image (Graphics) -> gif, png, jpeg, svg ...

– Audio & Video -> mp3, ogg, webm ...

 Multipurpose Internet Mail Extensions (MIME) allows the client to
recognize how to handle/present the particular multimedia asset/
node:

 Ex.: Content-Type: text/plain

 More examples for standard MIME types:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

 Vendor specific media (MIME) types: application/vnd.*+json/xml

Media Type Media SubType (format)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

HTTP Request Structure

GET /context/Servlet
HTTP/1.1

Host: Client_Host_Name

Header2: Header2_Data

...

HeaderN: HeaderN_Data

<Празен ред>

POST /context/Servlet HTTP/
1.1

Host: Client_Host_Name

Header2: Header2_Data

...

HeaderN: HeaderN_Data

<Празен ред>

POST_Data

HTTP Response Structure

HTTP/1.1 200 OK

Content-Type:
application/json

Header2: Header2_Data

...

HeaderN: HeaderN_Data

<Празен ред>

[{ "id":1,

 "name":"Novelties in Java EE 7 ...”,

 "description":"The presentation
is ...”,

 "created":"2014-05-10T12:37:59",

 "modified":"2014-05-10T13:50:02",

 },

 { "id":2,

 "name":"Mobile Apps with
HTML5 ...”,

 "description":"Building Mobile ...”,

 "created":"2014-05-10T12:40:01",

 "modified":"2014-05-10T12:40:01",

 }]

Java EE 6
Architectur
e

Source: http://en.wikipedia.org/wiki/File:SOA_Detailed_Diagram.png,
Author: JamesLWilliams2010, License: Creative Commons Attribution 3.0 Unported

Service Oriented Architecture (SOA)

Architectural Properties

According to Dr. Roy Fielding [Architectural Styles and the
Design of Network-based Software Architectures, 2000]:

– Performance

– Scalability

– Reliability

– Simplicity

– Extensibility

• All of them should be present in a desired Web
Architecture and REST architectural style tries to preserve
them by consistently applying several architectural
constraints

– Dynamic evolvability

– Cusomizability

– Configurability

– Visibility

REST Architecture

According to Roy Fielding [Architectural Styles and the Design
of Network-based Software Architectures, 2000]:

• Client-Server

• Stateless

• Uniform Interface:

– Identification of resources

– Manipulation of resources through representations

– Self-descriptive messages

– Hypermedia as the engine of application state
(HATEOAS)

• Layered System

• Code on Demand (optional)

Representational State Transfer(REST)

 REpresentational State Transfer (REST) is an architecture
for accessing distributed hypermedia web-services

 The resources are identified by URIs and are accessed
and manipulated using an HHTP interface base methods
(GET, POST, PUT, DELETE, OPTIONS, HEAD, PATCH)

 Information is exchanged using representations of these
resources

 Lightweight alternative to SOAP+WSDL -> HTTP + Any
representation format (e.g. JavaScript™ Object Notation –
JSON)

 Identification of resources – URIs

 Representation of resources – e.g. HTML, XML, JSON, etc.

 Manipulation of resources through these representations

 Self-descriptive messages - Internet media type (MIME type)
provides enough information to describe how to process the
message. Responses also explicitly indicate their cacheability.

 Hypermedia as the engine of application state (aka
HATEOAS)

 Application contracts are expressed as media types and
[semantic] link realtions (rel attribute - RFC5988, "Web
Linking")

Representational State Transfer(REST)

Source: http://en.wikipedia.org/wiki/Representational_state_transfer

http://en.wikipedia.org/wiki/Representational_state_transfer

Hypermedia As The Engine Of Application State
(HATEOAS) – New Link Header (RFC 5988) Example

Content-Length →1656
Content-Type →application/json
Link →<http://localhost:8080/polling/resources/polls/629>;
rel="prev"; type="application/json"; title="Previous poll",
<http://localhost:8080/polling/resources/polls/632>; rel="next";
type="application/json"; title="Next poll",
<http://localhost:8080/polling/resources/polls>;
rel="collection"; type="application/json"; title="Polls
collection", <http://localhost:8080/polling/resources/polls>;
rel="collection up"; type="application/json"; title="Self
link", <http://localhost:8080/polling/resources/polls/630>;
rel="self"

Example: URLs + HTTP Methods

Uniform Resource
Locator (URL)

GET PUT POST DELETE

Collection, such as
http://api.example.com/

comments/

List the URIs and
perhaps other
details of the
collection's
members.

Replace the
entire collection
with another
collection.

Create a new
entry in the
collection. The
new entry's URI
is assigned
automatically
and is usually
returned by the
operation.

Delete the
entire
collection.

Element, such as
http://api.example.com/

comments/11

Retrieve a
representation of
the addressed
member of the
collection,
expressed in an
appropriate
Internet media
type.

Replace the
addressed
member of the
collection, or if
it does not
exist, create it.

Not generally
used. Treat the
addressed
member as a
collection in its
own right
and create a
new entry in it.

Delete the
addressed
member of
the
collection.

Source: https://en.wikipedia.org/wiki/Representational_state_transfer

https://en.wikipedia.org/wiki/Representational_state_transfer

Advantages of REST

 Scalability of component interactions – through layering the
client server-communication and enabling load-balancing,
shared caching, security policy enforcement;

 Generality of interfaces – allowing simplicity, reliability,
security and improved visibility by intermediaries, easy
configuration, robustness, and greater efficiency by fully
utilizing the capabilities of HTTP protocol;

 Independent development and evolution of components,
dynamic evolvability of services, without breaking existing
clients.

 Fault tolerant, Recoverable, Secure, Loosely coupled

Richardson's Web Maturity Model

According to Leonard Richardson [Talk at QCon, 2008 -
http://www.crummy.com/writing/speaking/2008-QCon/
act3.html]:

• Level 0 – POX: Single URI (XML-RPC, SOAP)

• Level 1 – Resources: Many URIs, Single Verb (URI
Tunneling)

• Level 2 – HTTP Verbs: Many URIs, Many Verbs (CRUD
– e.g Amazon S3)

• Level 3 – Hypermedia Links Control the Application
State = HATEOAS (Hypertext As The Engine Of
Application State) === truely RESTful Services

Cross-Origin Resource Sharing(CORS)

 Позволява осъществяване на заявки за ресурси към
домейни различни от този за извикващия скрипт, като
едновременно предостявя възможност на сървъра да
прецени към кои скриптове (от кои домейни – Origin) да
връща ресурса и какъв тип заявки да разрешава (GET,
POST)

 За да се осъществи това, когато заявката е с HTTP метод
различен от GET се прави предварителна (preflight)
OPTIONS заявка в отговор на която сървъра връща кои
методи са достъпни за съответния Origin и съответния
ресурс

CORS HTTP Headers - Simple

 HTTP GET request

GET /crossDomainResource/ HTTP/1.1
Referer: http://sample.com/crossDomainMashup/
Origin: http://sample.com

 HTTP GET response

Access-Control-Allow-Origin: http://sample.com
Content-Type: application/xml

CORS HTTP HEADERS – POST ...

 HTTP OPTIONS preflight request

OPTIONS /crossDomainPOSTResource/ HTTP/1.1
Origin: http://sample.com
Access-Control-Request-Method: POST
Access-Control-Request-Headers: MYHEADER

 HTTP response

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://sample.com
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Allow-Headers: MYHEADER
Access-Control-Max-Age: 864000

Thank’s for Your Attention!

20

Trayan Iliev

CEO of IPT – Intellectual Products
& Technologies

http://iproduct.org/

http://robolearn.org/

https://github.com/iproduct

https://twitter.com/trayaniliev

https://www.facebook.com/IPT.EACAD

https://plus.google.com/+IproductOrg

http://iproduct.org/
http://robolearn.org/
https://github.com/iproduct
https://twitter.com/trayaniliev
https://www.facebook.com/IPT.EACAD
https://plus.google.com/+IproductOrg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

