
March 11, 2016
Voxxed Days Bucharest

Reactive Java
Robotics and IoT

Trayan Iliev
CTO of IPT – Intellectual

Products & Technologies

http://robolearn.org/
http://iproduct.org/

http://robolearn.org/
http://iproduct.org/

Tales of JAVA Robotics

2

There are so many tales to share…
Where should I start? ... from the Beginning …
 Tale of Common Sense: DDD
 Tale of Segregation between Queries and
Commands, and ultimate Event Sourcing
 Tale of two cities - Imperative and Reactive
 Tale of two brave robots: LeJaRo and IPTPI
 And a lot of real reactive Java
 + TypeScript / Angular 2 / WebSocket code 

Oracle® and Java™ are trademarks or registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Common Sense: DDD

3

There was a time upon …

When were

and people were

Simple times …

Common Sense: DDD

4

But then computers came and became more

… and more powerful …
The MareNostrum supercomputer in the Barcelona Supercomputing Center
- National Supercomputing Center (BSC-CNS), Spain. (Photo: IBM Research/Flickr)

https://flic.kr/p/nVt6WU

Common Sense: DDD

5

People could not easily cope with the
complexity of problems being modeled anymore

Simple solutions are needed – cope with
problems through divide and concur on different
levels of abstraction: Domain Driven Design –
back to basics: data, domain objects.

Described by Eric Evans in his book:
Domain Driven Design: Tackling Complexity in
the Heart of Software

Simple times …

Common Sense: DDD

6

Actually DDD require additional efforts (as most
other divide and concur modeling approaches :)

 Ubiquitous language and Bounded Contexts

 DDD Application Layers: Infrastructure,
Domain, Application, Presentation

 Hexagonal architecture :

OUTSIDE <-> transformer <-> (application <->
domain) [A. Cockburn]

Simple times …

Common Sense: DDD

7

Main concepts:

 Entities, value objects and modules

 Aggregates and Aggregate Roots [Haywood]:

value < entity < aggregate < module < BC

 Repositories, Factories and Services:

application services <-> domain services

 Separating interface from implementation

CQRS and Event Sourcing

8

Queries and Commands have different
requirements:

 Queries – eventual consistency, no need for
transactions (idempotent), caching is essential,
reporting DB de-normalization, often report
aggregate data, Naked Objects (Material Views)

 Commands – often transactional, eventual
consistency may be not ok, normalized DB,
usually manage single entities

Imperative and Reactive

9

We live in a Connected Universe
The title refers to the butterfly
effect, a popular hypothetical
example of chaos theory
which illustrates how small
initial differences may
activate chains of events
leading to large and often
unforeseen consequences in
the future...

Imperative and Reactive

10

We live in a Connected Universe

... there is hypothesis that all the things in the
Universe are intimately connected, and you can
not change a bit without changing all.

Action – Reaction principle is the essence of
how Universe behaves.

Imperative and Reactive

11

 Reactive Programming [Wikipedia]: a programming paradigm
oriented around data flows and the propagation of change. This
means that it should be possible to express static or dynamic
data flows with ease in the programming languages used, and
that the underlying execution model will automatically propagate
changes through the data flow. Ex: a := b + c

Functional Programming [Wikipedia]: a programming paradigm
that treats computation as the evaluation of mathematical
functions and avoids changing-state and mutable data. It is a
declarative programming paradigm. Eliminating side effects can
make it much easier to understand and predict the program
behavior. Ex: books.stream().filter(book ->
book.getYear() > 2010). forEach(System.out::println)

Functional Reactive (FRP)

12

 According to Connal Elliot's answer in Stack Overflow
(ground-breaking paper @ Conference on Functional
Programming, 1997):
I'm glad you're starting by asking about a specification rather
than implementation first. There are a lot of ideas floating
around about what FRP is. For me it's always been two things:
(a) denotative and (b) temporally continuous. Many folks
drop both of these properties and identify FRP with various
implementation notions, all of which are beside the point in my
perspective.
" Functional Reactive Programming (FRP) = Denotative,
Continuous-Time Programming (DCTP) "

Reactive Manifesto

13

 [http://www.reactivemanifesto.org]

http://www.reactivemanifesto.org/

Reactive Programming

14

 Microsoft® opens source polyglot project ReactiveX
 (Reactive Extensions) [http://reactivex.io]:

Rx = Observables + LINQ + Schedulers :)

Java: RxJava, JavaScript: RxJS, C#: Rx.NET, C#(Unity): UniRx, Scala: RxScala,
Clojure: RxClojure, C++: RxCpp, Ruby: Rx.rb, Python: RxPY, Groovy: RxGroovy,
JRuby: RxJRuby, Kotlin: RxKotlin, Swift: RxSwift

Reactive Streams Specification
[http://www.reactive-streams.org/] used by

(Spring) Project Reactor
[http://projectreactor.io/, https://github.com/reactor/reactor]

http://reactivex.io/
http://www.reactive-streams.org/
http://projectreactor.io/
https://github.com/reactor/reactor

Reactive Streams Spec.

15

 Reactive Streams – provides standard for
asynchronous stream processing with non-blocking
back pressure. This encompasses efforts aimed at
runtime environments (JVM & JavaScript) as well as
network protocols.

 Minimal set of interfaces, methods and protocols for
asynchronous data streams

 As of April 30, 2015 have been released version
1.0.0 of Reactive Streams for the JVM, including
Java API, a textual Specification, a TCK and
implementation examples.

Reactive Streams Spec.

16

 Publisher – provider of potentially unbounded number of
sequenced elements, according to Subscriber(s) demand. After
invoking Publisher.subscribe(Subscriber). Subscriber methods
protocol is: onSubscribe onNext* (onError | onComplete)?
 Subscriber – receives call to onSubscribe(Subscription)
once after passing an instance to
Publisher.subscribe(Subscriber). No further notifications until
Subscription.request(long) is called.
 Subscription – represents one-to-one lifecycle of a
Subscriber subscribing to a Publisher. It is used to both signal
desire for data and cancel demand (allow resource cleanup).
 Processor -represents a processing stage, which is both a
Subscriber and Publisher and obeys the contracts of both.

RP = Async Data Streams

17

 Functional Reactive Programming (FRP) [Wikipedia]:
asynchronous dataflow programming using the building blocks
of functional programming (e.g. map, reduce, filter). FRP has
been used for programming graphical user interfaces (GUIs),
robotics, and music, aiming to simplify these problems by
explicitly modeling time. Example (RxJava):

Observable.from(new String[]{"Reactive",
"Extensions", "Java"})
 .take(2).map(s -> s + " : on " + new Date())
 .subscribe(s -> System.out.println(s));
Result:
Reactive : on Wed Jun 17 21:54:02 GMT+02:00 2015
Extensions : on Wed Jun 17 21:54:02 GMT+02:00 2015

Imperative and Reactive

18

Queries and Commands have different
requirements:

 Queries – eventual consistency, no need for
transactions (idempotent), caching is essential,
reporting DB de-normalization, often report
aggregate data, Naked Objects (Material Views)

 Commands – often transactional, eventual
consistency may be not ok, normalized DB,
usually manage single entities

Reactor Design Pattern

19

Proactor Design Pattern

20

Project Reactor

21

 Reactor project allows building high-
performance (low latency high throughput) non-
blocking asynchronous applications on JVM.
 Reactor is designed to be extraordinarily fast
and can sustain throughput rates on torder of
10's of millions of operations per second.
 Reactor has powerful API for declaring data
transformations and functional composition.
Makes use of the concept of Mechanical
Sympathy built on top of Disruptor / RingBuffer.

Project Reactor

22

Pre-allocation at startup-time;
Message-passing structures are bounded;
Using Reactive and Event-Driven Architecture
patterns => non-blocking end-to-end flows, replies;
Implement Reactive Streams Specification, to make
bounded structures efficient by not requesting more
than their capacity;
Applies above features to IPC and provides non-
blocking IO drivers that are flow-control aware;
Expose a Functional API - organize their code in a
side-effect free way, which helps you determine you
are thread-safe and fault-tolerant.

Reactor: Hello World

23

public class ReactorHelloWorld {
 public static void main(String... args) throws
 InterruptedException {
 Broadcaster<String> sink = Broadcaster.create();
 SchedulerGroup sched = SchedulerGroup.async();
 sink.dispatchOn(sched)
 .map(String::toUpperCase)
 .filter(s -> s.startsWith("HELLO"))
 .consume(s -> System.out.printf("s=%s%n", s));
 sink.onNext("Hello World!");
 sink.onNext("Goodbye World!");
 Thread.sleep(500);
 }
}

Reactor Bus: IPTPI

24

LeJaRo: Lego® Java Robot

25

Modular – 3 motors (with encoders) – one driving
each track, and third for robot clamp.

Three sensors: touch sensor (obstacle avoidance),
light color sensor (follow line), IR sensor (remote).

LeJaRo is programmed in Java using LeJOS library.

More information about LeJaRo:
http://robolearn.org/lejaro/

Programming examples available @GitHub:
https://github.com/iproduct/course-social-robotics/tr
ee/master/motors_demo

LEGO® is a registered trademark of LEGO® Group. Programs of IPT are not affiliated, sponsored
or endorsed by LEGO® Education or LEGO® Group.

http://robolearn.org/lejaro/
https://github.com/iproduct/course-social-robotics/tree/master/motors_demo
https://github.com/iproduct/course-social-robotics/tree/master/motors_demo

26

IPTPI: RPi2 + Ardunio Robot

27

Raspberry Pi 2 (quad-core
ARMv7 @ 900MHz) + Arduino
Leonardo cloneA-Star 32U4 Micro

Optical encoders (custom), IR
optical array, 3D accelerometers,
gyros, and compass MinIMU-9 v2

IPTPI is programmed in Java
using Pi4J, Reactor, RxJava, Akka

More information about IPTPI:
http://robolearn.org/iptpi-robot/

https://www.pololu.com/product/3101
https://www.pololu.com/product/1268
http://pi4j.com/
http://projectreactor.io/
http://reactivex.io/
http://akka.io/
http://robolearn.org/iptpi-robot/

28

Tale of Simplicity: DDD

29

Lets See Some Code 

30

VOXXED Demo code is available @ GitHub:
https://github.com/iproduct/voxxed-demo

IPTPI Reactive Streams

31

Encoder
Readings

ArduinoData
Fluxion

Arduino
SerialData

Position
Fluxion

Robot
Positions

Command
Movement
Subscriber

RobotWSService
(using Reactor)

Angular 2 /
TypeScript

MovementCommands

IPTPI: ArduinoDataFluxion I

32

fluxion = Broadcaster.create();
emitter = fluxion.startEmitter();
final Serial serial = SerialFactory.createInstance();
serial.addListener(new SerialDataEventListener() {
 private ByteBuffer buffer = ByteBuffer.allocate(1024);
 @Override
 public void dataReceived(SerialDataEvent event) {
 try {
 ByteBuffer newBuffer = event.getByteBuffer();
 buffer.put(newBuffer);
 buffer.flip();
 ...
 buffer.get();
 long timestamp = buffer.getInt(); //get timestamp
 int encoderL = -buffer.getInt(); //motors mirrored
 int encoderR = buffer.getInt();

IPTPI: ArduinoDataFluxion II

33

 EncoderReadings readings =
 new EncoderReadings(encoderR, encoderL, timestamp);
 emitter.submit(readings);
 ...
 buffer.compact();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
});
try {
 serial.open(PORT, 38400);
} catch(SerialPortException | IOException ex) {
 System.out.println(“SERIAL SETUP FAILED:"+ex.getMessage());
}

IPTPI: PositionFluxion I

34

CommandMovementSubscriber I

35

public class CommandMovementSubscriber extends
 ConsumerSubscriber<Command<Movement>> {
 private PositionFluxion positions;
 public CommandMovementSubscriber(PositionFluxion positions){
 this.positions = positions;
 Gpio.wiringPiSetupGpio(); // initialize wiringPi library
 Gpio.pinMode(5, Gpio.OUTPUT); // Motor direction pins
 Gpio.pinMode(6, Gpio.OUTPUT);
 Gpio.pinMode(12, Gpio.PWM_OUTPUT); // Motor speed pins
 Gpio.pinMode(13, Gpio.PWM_OUTPUT);
 Gpio.pwmSetMode(Gpio.PWM_MODE_MS);
 Gpio.pwmSetRange(MAX_SPEED);
 Gpio.pwmSetClock(CLOCK_DIVISOR);
 }
 @Override
 public void doNext(Command<Movement> command) { ... }
}

CommandMovementSubscriber II

36

 private void runMotors(MotorsCommand mc) {
 //setting motor directions
 Gpio.digitalWrite(5, mc.getDirR() > 0 ? 1 : 0);
 Gpio.digitalWrite(6, mc.getDirL() > 0 ? 1 : 0);
 //setting speed
 if(mc.getVelocityR()>=0 && mc.getVelocityR() <=MAX_SPEED)
 Gpio.pwmWrite(12, mc.getVelocityR()); // set speed
 if(mc.getVelocityL()>=0 && mc.getVelocityL() <=MAX_SPEED)
 Gpio.pwmWrite(13, mc.getVelocityL());
 }
}

IPTPI: RobotWSService I

37

private void setupServer() throws InterruptedException {
 httpServer = NetStreams.<Buffer, Buffer>httpServer(
 HttpServerSpec<Buffer,Buffer> serverSpec ->
 serverSpec.listen("172.22.0.68", 80)
);
 httpServer.get("/", getStaticResourceHandler());
 httpServer.get("/index.html", getStaticResourceHandler());
 httpServer.get("/app/**", getStaticResourceHandler());
 ...
 httpServer.ws("/ws", getWsHandler());

 httpServer.start().subscribe(
 Subscribers.consumer(System.out::println));
}

IPTPI: RobotWSService II

38

private ReactorHttpHandler<Buffer, Buffer> getWsHandler() {
 return channel -> {
 System.out.println("Connected a websocket client: " +
 channel.remoteAddress());
 channel.map(Buffer::asString).consume(
 json -> {
 System.out.printf(“WS Message: %s%n“, json);
 Movement movement = gson.fromJson(json, Movement.class);
 movementCommands.onNext(new Command<>("move", movement));
 });

 return positions.flatMap(position ->
 channel.writeWith(
 Flux.just(Buffer.wrap(gson.toJson(position)))
));
 };
}

Additional Resources

39

IPT Reactive Java/JS/Typescript and Angular 2
courses: http://iproduct.org

More information about robots @RoboLearn:
http://robolearn.org/

Lots of Java robotics and IoT resources
@Social Robotics Course GitHub Wiki:
https://github.com/iproduct/course-social-
robotics/wiki/Lectures

http://iproduct.org/
http://robolearn.org/
https://github.com/iproduct/course-social-robotics/wiki/Lectures
https://github.com/iproduct/course-social-robotics/wiki/Lectures

Thank’s for Your Attention!

40

Trayan Iliev

CTO of IPT – Intellectual Products
& Technologies

http://iproduct.org/

http://robolearn.org/

https://github.com/iproduct

https://twitter.com/trayaniliev

https://www.facebook.com/trayan.iliev

https://plus.google.com/+IproductOrg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

